Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Santana Júnior, Wellington Alves
 |
Orientador(a): |
Cardoso, Carlos Alberto Villacorta |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Sergipe
|
Programa de Pós-Graduação: |
Pós-Graduação em Engenharia Elétrica
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://ri.ufs.br/handle/riufs/5031
|
Resumo: |
The problem of fault diagnosis has been widely discussed by the academic community using the theory of Discrete Event Systems. However, the application of this theory to real systems is a field where there is a lot to be explored. The problem proposed in this work is to diagnose permanent or intermittent failures in devices (sensors and actuators) belonging to stations of a didactic flexible manufacturing system, called Modular Production System - MPS, produced by Festo company. The objective will be achieved through a modeling and simulation that allow for future implementation in the system. Three methods will be presented on fault diagnosis written in UPPAAL software language which is based on the timed safety automata formalism, as proposed by ALUR and DILL (1994) and HENZINGER et al (1994). The first method is an implementation of TRIPAKIS (2002) diagnoser. The other two methods developed in this research are inspired by TRIPAKIS (2002) and are diagnosable by definitions presented in TRIPAKIS (2002) and I-diagnosability presented in Sampath et al. (1995). The strategies for fault detection include the use of a network of timed safety automata, composed of the automaton that describes the process behavior and the diagnosers automata for each type of failure. The diagnosers detect failures from the observation of delays of certain transitions in the automaton G (process) and isolate them through observations of the sensors states. Fault indicators events serve to announce failures and synchronize the automaton G with the diagnosers. |