Estudo de técnicas de previsão de consumo em sistemas de distribuição de gás natural

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Cruz, Gustavo Lima lattes
Orientador(a): Cardoso, Carlos Alberto Villacorta lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Sergipe
Programa de Pós-Graduação: Pós-Graduação em Engenharia Elétrica
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://ri.ufs.br/handle/riufs/5018
Resumo: The forecasting of gas consumption has a fundamental importance for the natural gas distribution company, since it is common for supply companies include clauses in their contracts that force the distributor companies to perform the volume programming of the natural gas to be withdrawn, these same companies are subjected to the application of penalties if the volume exceeds programmed limits previously established. Thus, in the present work has been studied the potentialities to use of predictive models based on regression, time series and artificial neural networks in forecasting gas consumption, with the intend to improved the methodologies currently used by gas distributor in the daily schedule to send to the supplier, in a scenario characterized by the predominance of industrial consumers with dissimilar characteristics. In this context, considering the potential of forecasting techniques, has been studied the gas consumption forecasting in the medium term of both the industrial consumers and the automotive segments. From these studies it was possible to identify particular types of behaviors, and the forecasting strategy most suitable approach using artificial neural networks, time series or a combination of both. To perform these studies was developed a computational tool to analyzing, parameterize and validate methods of forecasting based on historical data consumption. The results are promising because it presents boundary conditions close to actual values.