Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Santin, Rogério Réus
 |
Orientador(a): |
Montalvão Filho, Jugurta Rosa
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Sergipe
|
Programa de Pós-Graduação: |
Pós-Graduação em Engenharia Elétrica
|
Departamento: |
Não Informado pela instituição
|
País: |
BR
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://ri.ufs.br/handle/riufs/5016
|
Resumo: |
Due to the worldwide people ageing phenomenon, the health care at home (home care), a more humanized and cost saving method, for elderly people and long term care, is nowadays more and more usual. The problem is to assure prompt help when needed. A surveillance system can be the solution to improve caregiver awareness and patient safeness. This work investigates the possibility of indoor sounds direction of arrival detection, selection and determination, attempting to find out signals of a patient fall or collapse. The sounds after an acoustic event are recorded using a microphone array. If they pass the selection criteria, they are processed by a Direction of Arrival (DOA) detection algorithm. Five DOA algorithms were implemented and evaluated empirically. Three of them are already known, nominally, Generalized Cross Correlation (GCC), Generalized Cross Correlation - Phase Transform (GCC-PHAT), Degenerate Unmixing and Estimation Technique (DUET), and two are proposed at this work, Atack Border Detector and Spectrogram Technique. Performances were evaluated by taking the home care perspective into account. |