Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Valadares, Enaldo Cezar Santana |
Orientador(a): |
Santana, Pedro Leite de
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Sergipe
|
Programa de Pós-Graduação: |
Pós-Graduação em Engenharia Química
|
Departamento: |
Não Informado pela instituição
|
País: |
BR
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://ri.ufs.br/handle/riufs/5053
|
Resumo: |
This work presents the result achieved through investigation of RH-2 gas-lift valve dynamic performance. It is an unbalanced gas-lift valve injection pressure operated, for high injection pressure applications. First, a CFD model was developed in order to obtain the valve orifice flow pattern performance curve. The CFD curve was compared with the curve experimentally obtained, conceiving very promising results. A test bench, and the necessary test devices, have been projected and built looking forward to determine the bellows load rate. Second, a CFD mesh deformation model was developed, which allowed the determination of dynamic performance curves on orifice, transition and throttling flow patterns for a given bellows pressure. The accuracy of the mesh deformation model was verified comparing the obtained curve with experimental results. The results of numerous CFD model simulations allowed to correlate data and to find a transition pressure, the production pressure for the maximum gas throughput and the product of the discharge coefficient by the expansion factor. The mathematical model developed allows predicting the gas throughput capacity of the gas-lift valve using injection pressure, production pressure and bellows pressure, for a defined load rate and a defined port diameter. |