Utilização de biossólido no crescimento inicial de pinhão manso (Jatropha curcas L) cultivado em solo com diferentes texturas

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Santos, Jean Nonato Ribeiro dos lattes
Orientador(a): Gonzaga, Maria Isidória Silva
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Sergipe
Programa de Pós-Graduação: Pós-Graduação em Recursos Hídricos
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://ri.ufs.br/handle/riufs/6185
Resumo: The application of biosolids in agricultural soils promotes the recycling of nutrients, improvement in the soil physical, chemical and biological properties through the addition of carbon rich material, thereby improving the environment for plant growth. Furthermore, it is a wise strategy for the waste disposal. However, its use should be handled with caution and taking into consideration mainly soil texture, to avoid problems of contamination of surface and groundwater. The aim of the study was: i) to evaluate the initial growth of Jatropha curcas L in soils with different textures and with different doses of biosolids, ii) to evaluate the absorption of some plant macro and micronutrients; iii) to evaluate the effect of biosolids on soil chemical properties. The study was conducted in a greenhouse using a completely randomized design in a 3 x 4 factorial scheme, with three types of soil textural class (Sand, represented by a Spodosol; Sandy loam, represented by an Ultisol (0-20 cm layer); and Sandy clay loam, represented by an Ultisol (20-40 cm layer) and 4 doses of biosolids (0, 16, 80 and 160 t ha-1), with 3 replications. Plants were grown for 60 days in plastic pots containing 4 kg of soil. Soil moisture was kept at 70% of field capacity. The chlorophyll content and leaf area were measured at harvest. After harvest, shoot and root biomass, and concentrations of P, K, Zn and Cu in plant tissues were determined. Soil samples were collected from each pot after harvest and analyzed for pH, organic matter content, electrical conductivity, cation exchange capacity and concentrations of P, K, Ca, Mg, Na, Al, Zn and Cu . Plant growth was higher in soil with biosolids than in the control soil, regardless of soil texture differences. However, doses over 80 T ha-1 did not cause the plant to growth at the same rate in the soils A and FA, but were more effective in the soil FAA. Biosolids caused increases in soil pH, organic matter, CEC and concentrations of P, Ca, K, Na, Cu e Zn, even though results varied with soil texture and doses of biosolids. The results confirm the advantages of using biosolids, however, they also show the importance of biosolids management in different soils.