Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Zucolotto, Benjamim
 |
Orientador(a): |
Folly, Walter Sydney Dutra
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Sergipe
|
Programa de Pós-Graduação: |
Pós-Graduação em Física
|
Departamento: |
Não Informado pela instituição
|
País: |
BR
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://ri.ufs.br/handle/riufs/5350
|
Resumo: |
In this work we studied the magnetic properties referring to the MgFe2O4 nanoparticles precipitated in monocrystalline solid solution of [Mg, Fe]O, with 2.2% iron, obtained at different temperatures and times. These particles grow coherently with the matrix lattice and present shapes of small octahedrons whose diagonals are parallel to the [100] directions. The results presented here refer to samples treated in the temperature range between 400 and 900 º C for 2, 6 and 10 hours. They were analyzed by X-ray diffraction (XRD), magnetization as a function of field (hysteresis curves) and magnetization as a function of temperature (Zero Field Cooled e Field Cooled Warming). It was observed that in samples treated for 6 hours, the system shows increasing values of magnetization remanent and coercive field for temperatures of precipitation from 600 º C, which can be attributed to the precipitation and growth of nanoparticles magnesioferrite matrix. The variation of coercive field with temperature measurement was studied using two different theoretical models. By comparing the remanent magnetization and coercive field of the samples, it was found that the variation of the inversion parameter of magnesioferrite in the studied range of precipitation temperature decreases as reported by other authors. |