Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Ribeiro, Quelita Araújo Diniz da Silva
 |
Orientador(a): |
Soares, Michel dos Santos |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Sergipe
|
Programa de Pós-Graduação: |
Pós-Graduação em Ciência da Computação
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://ri.ufs.br/handle/riufs/3396
|
Resumo: |
Architectural specification of real-time software systems is an activity that conveys analysis, knowledge and understanding of both the application domain and the parties involved in software construction. Architecture plays a key role in communication between stakeholders, in addition to planning the entire architectural process involved in the project. However, Architecture Description Languages (ADLs) have not been widely used in the industry. Another limiting factor for the e ff ective use of ADLs is the di ffi culty of these languages in e ff ectively expressing the architecture of complex systems. Considering this situation of di ffi culty in the e ff ective use of ADLs, the UML has been used in recent years to model the architecture. However, UML can not represent the important characteristics pertinent to real-time systems, such as security or real-time constraints. One of the advantages of the UML is the extensibility allowing the creation of profiles. In this sense, this work proposes using Systems Modeling Language (SysML), a UML profile, to model real-time systems architecture in two automotive systems, the airbag control system and the light control system. The objective of this work is to use UML and SysML to model and document the architecture and design of requirements traceability between software and systems elements, increasing the understanding of the project among the parties involved, and finally presenting SysML as a language for description of real-time software architecture. The ADL Architecture Analysis and Design Language (AADL) and SysML languages were compared to show the advantages of SysML. As a result, it was noticed that abstract features such as conditional deviations, loop, characteristics that are related to reality and consequently to the system can not be described in AADL. SysML has proved to be relevant in the context of architecture description, analysis, classification and modeling of real-time systems. The SysML Requirements diagram explicitly shows the various types of relationships between di ff erent requirements, the Block diagram enables the global view of the systems involved in a single project, the Internal Block diagram allows the internal view of the system under construction, the Activity diagram considers the behavioral view of the system. SysML concepts, articulated in the SysML Requirements, Activities, Blocks and Internal Blocks diagrams, are complementary, covering the purposes needed to describe the architecture of real-time systems. It is concluded that the proposed UML and SysML join technique provides elements to describe software requirements and their relationships with the system, to manage changes, to evolve and to trace requirements more easily, in addition to the communication being e ff ectively carried out between the stakeholders. This is important for the development of real-time systems because of the diversity of people / teams involved and influencing a wide range of design decisions. |