Progressões aritméticas de ordem superior : resultados e aplicações

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Oliveira, Edson de Jesus
Orientador(a): Alegri, Mateus
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Mestrado Profissional em Matemática
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://ri.ufs.br/jspui/handle/riufs/11322
Resumo: This dissertation is a study on the Arithmetic Progressions of Higher Order and, to show the main results of this work, it was necessary to present the Principle of Mathematical Induction and the Principles of Discrete Mathematics. We begin the work by defining the Principle of Mathematical Induction and using it to demonstrate identities, inequalities and to solve some problems of divisibility. Next, we present the principles of discrete mathematics, the additive principle, and the multiplicative principle. We begin the study of progressions by exhibiting some elementary notions of succession. Promptly, we present the concept of ordinary arithmetic progressions, higher order arithmetic progressions, and some results. As an application, we present a conjecture based on higher order arithmetic progressions and a general formula for calculating the number of subtriangles of a larger triangle with sides equal to n, for every natural n. The reason for presenting the conjecture based on arithmetic progressions is due to the fact that we plan an activity in which we present this concept to high school students and then ask them to look for a possible formula for the number of subtriangles of a larger side triangle with n side points (with odd n).