Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Brito, Thaysnara Batista |
Orientador(a): |
Cavalcanti, Sócrates Cabral de Holanda |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Pós-Graduação em Ciências Farmacêuticas
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://ri.ufs.br/jspui/handle/riufs/9125
|
Resumo: |
Considered viral diseases of major re-emerging in the world, the dengue, chikungunya and Zika have as the main vector Aedes aegypti (L.) (Diptera: Culicidae). Larvicidal vector control is an important measure to prevent the transmission of such infections. A major challenge in the control of this arthropod is the low sensitivity of its population through the use of conventional larvicides. Thus, the insect acquires resistance, reducing the effectiveness of these pesticides. Consequently, it will lead to an increase in the risks of toxicity in nontarget organisms and a change in the environment. An alternative to avoid problems caused by the use of these products is the search for new compounds with less environmental impact and better benefits to human health. The indole molecule ring represents one of the subunits of great importance in the discovery of new pesticide products for the pharmaceutical market. By Friedel-Crafts acylation reaction, the C-3 of this ring makes it susceptible to chemically react. Thus, 12 indole analogues were synthesized as potential larvicidal agents against Ae. aegypti in its 3rd larval stage followed by the evaluation of the toxicity in nauplii of Artemia sp. The compounds were identified by analytical thin-layer chromatography, purified on a silica gel 60 chromatographic column (using the Hexane: Ethyl acetate (90:10, v / v) binary system as the mobile phase) and characterized by melting point, 13C and 1H NMR (using a residual solvent peak or TMS as reference for 1 H NMR spectra), mass spectrum and infrared. Bioassays were performed using 20 larvae per test, disposable cups containing 20mL of the test solution in triplicate. Branched aliphatic side chain derivatives were more potent than the others were, and the linear ones exhibited potency oscillation as the addition of the methylene chains. Toxicity tests indicated that (3-chlorophenyl)1-(1H-indol-3-yl)methanone, with moderate larvicidal potency (LC50 = 50.59 ppm), showed the highest selectivity index (SI >19.7), being less toxic to Artemia sp. than Ae. aegypti. The relationships between structural changes in indole derivatives and their LC50 results provide information that may contribute to the understanding of the influence of physicochemical properties on the larvicidal action of this class of compounds, without damage to the ecosystem. |