Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Santana, Kathamania Vanessa Rezende
 |
Orientador(a): |
Wisniewski Junior, Alberto |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Sergipe
|
Programa de Pós-Graduação: |
Pós-Graduação em Química
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://ri.ufs.br/handle/riufs/6074
|
Resumo: |
The energy sources and oil derivatives necessities have increased over the last years as well the mitigation of greenhouse gases (GHGs) emissions. These concepts provided an increase on the use of residual lignocellulosic biomass as a renewable source for the production of biofuels and chemical products. In this study, the cattle manure was chosen as a biomass source considering their high availability, as well as could be a major environmental pollutant residue when not treated properly. Thus, we propose to produce and characterize the bio-oil and biochar through of micro and macroscale pyrolysis. The work was divided into two parts: biomass characterization and characterization of the pyrolysis products. The cattle manure biomass presented 9.65% moisture after drying over ambient temperature, 38.86% ash, 48.29% volatile matter and 3.20% fixed carbon; high oxygen content (34.19%) and carbon (21.66%) by elemental analysis; and low lignin content (6.09%) in comparison with the hemicellulose (18.24%) and cellulose (14.24%). The thermogravimetric curve showed four mass loss stage between 25- 900 o C and a residual mass content of 39.58%; infrared analysis showed characteristic bands of alcohols, phenols, carboxylic acids, nitrogenous compounds and aliphatic groups. Concerning of bio-oils characterization, presented as highly oxygenated liquid with predominant compounds from the alcohols, phenols and carboxylic acid in micro and macroscale. Due to the high calorific value of bio-oils (21.35–27.10 MJ kg -1 ), can be used as biofuel. Biochars showed yields between 62.5% and 39.1%, the increase on pyrolysis temperature has provided an increase in ash and pH values, as also decreasing in proportion H/C, indicating increase on aromaticity of biochar the 600 ºC, also evidenced by the infrared analysis. |