Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Gonçalves, Jorge Antônio Vieira
 |
Orientador(a): |
Macêdo, Marcelo Andrade
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Sergipe
|
Programa de Pós-Graduação: |
Pós-Graduação em Ciência e Engenharia de Materiais
|
Departamento: |
Não Informado pela instituição
|
País: |
BR
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://ri.ufs.br/handle/riufs/3485
|
Resumo: |
Polymer composites reinforced with fibers are of great interest in the automotive industry, with emphasis to epoxy resin reinforced with glass fibers However, these fibers exhibit abrasive behavior causing wear of equipment, making it susceptible to the loss of properties due to the breakdown of fibers during processing, high cost of manufacturing. In turn, the interest of companies and researchers for composite alternatives, using renewable resources, having a low cost and being biodegradable, has increased. The use of vegetable fibers in thermosetting in commercial applications has been promising, considering that they are not toxic, have low cost, are renewable sources and meet the demands of environmental preservation. In addition, the vegetable fibers are not abrasive to processing equipment and create composites with low susceptibility to loss of properties during processing. Among the wide variety of existing plant fibers, coir (coconut product), abundant in the state of Sergipe, with an average diameter of 0.25 mm and lower density than the glass fibers, it was studied as a strengthening component in the epoxy matrix (DGEBA), at the levels of 0, 10, 20 and 30% by weight, continuous and randomly oriented. These composites were tested in tension and bending and their surface examined by scanning electron microscopy (SEM). Among the properties evaluated, the increase in the level of reinforcement caused a significant increase in the tensile strength and bending modulus of the composites compared to pure resin. The microstructural observations revealed the failure mechanisms that can occur during fracture, and that the area of natural coconut fiber contributes to good adhesion with DGEBA (diglycidyl ether of bisphenol A). |