Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Santos, Priscilla Azevedo dos
 |
Orientador(a): |
Pinheiro, Helena Saraiva Koenow
 |
Banca de defesa: |
Pinheiro, Helena Saraiva Koenow
,
Ceddia, Marcos Bacis
,
Bhering, Silvio Barge
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal Rural do Rio de Janeiro
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Modelagem e Evolução Geológica
|
Departamento: |
Instituto de Agronomia
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://rima.ufrrj.br/jspui/handle/20.500.14407/14312
|
Resumo: |
O conhecimento acerca dos atributos físico-hídricos dos solos é importante para estudos voltados a compreensão do regime hídrico e monitoramento do fluxo de água, principalmente em bacias hidrográficas, onde o conteúdo de água armazenado e disponibilizado afeta tanto as funções ambientais dos solos, quanto a biodiversidade e a sustentabilidade desse recurso natural. No Brasil, os bancos de dados de solos possuem poucas informações coletadas acerca de parâmetros hídricos dos solos tais como a velocidade de infiltração básica (vib) e a condutividade hidráulica saturada (Ksat), devido à não realização sistemática de testes de infiltração ao se executar os levantamentos pedométricos e a dificuldade de mensuração de tais parâmetros nas camadas mais profundas da pedosfera. Neste contexto, torna-se passível a estimativa da vib e da Ksat associando-se as propriedades granulométricas e físico-químicas dos solos coletadas em campo por meio de algoritmos para pedologia quantitativa (do inglês, Algorithmsfor Quantitative Pedology - AQP) e implementação de funções de pedotransferência usando análise regressiva multivariada e algoritmos de machine learning baseados em árvores, capazes de modelá-los vertical (em perfil) e espacialmente sob a área de estudo. Ainda, como forma de ampliar as informações sobre a área estudada e garantir uma modelagem mais fidedigna e robusta, é desejável associar parâmetros mensuráveis em campo e laboratório com demais informações relevantes que ajudem a análise de bacias hidrográficas compondo assim as variáveis de entrada nos modelos citados. Este estudo sugere a aplicação de variáveis oriundas de modelagem numérica do terreno, obtidas através de Modelo Digital de Elevação (MDE), e dados radiométricos, derivados aerogeofísica ambiental (aeromagnetometria e aerogamaespectrometria) e análise espectral sob índices relativos à vegetação, solo e água utilizando imagens do sensor Sentinel-2A (índices espectrais) por meio de Sensoriamento Remoto. Para a análise quantitativa dos dados e seleção de covariáveis dos modelos, foram abordados métodos estatístico-descritivo e multivariado, visando o entendimento interrelacional das variáveis preditoras e a redução de dimensionalidades e/ou multicolinearidade nas variáveis de entrada nos modelos. Pelos resultados obtidos, os modelos baseados em árvores (Random Forest – RF e Árvores de Regressão - AR) apresentaram melhor desempenho na modelagem dos atributos físico-hídricos frente ao modelo regressivo na estimativa das funções de pedotrasnferência. A abordagem multivariada usando os métodos de seleção e redução de dimensionalidade permitiram a escolha otimizada das variáveis de entrada na modelagem, eliminação de problemas de multicolinearidade dos dados e redução do conjunto de dados, obtendo diversificada resposta para as camadas de solos avaliadas. O estudo mostra o potencial de integração de dados topográficos, pedológicos e radiométricos e sua contribuição no mapeamento e modelagem digital de solos, visando a compreensão da variabilidade dos atributos físico-hídricos na bacia hidrográfica estudada. |