Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Leal, Marcelle Rosa Ribeiro
 |
Orientador(a): |
Silva, Robson Mariano da
 |
Banca de defesa: |
Teixeira, Rafael Bernardo
,
Benac, Marcos Azevedo
,
Golçalves, Reinaldo Bellini
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal Rural do Rio de Janeiro
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Modelagem Matemática e Computacional
|
Departamento: |
Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://rima.ufrrj.br/jspui/handle/20.500.14407/14333
|
Resumo: |
O câncer de mama é a segunda neoplasia mais frequente no mundo. Segundo dados do Instituto Nacional de Câncer (INCA), no ano de 2014 foram diagnosticados 59.700 novos casos no Brasil, número este que corresponde a um aumento de 22% em relação ao ano de 2013. Sendo responsável por aproximadamente 39% dos óbitos das mulheres portadores de câncer. Para um diagnóstico preciso, exige-se muita experiência e, principalmente, que a classificação do estadiamento clínico do tumor (estágio do câncer) esteja correta. Desta forma, torna-se necessário o desenvolvimento de sistemas integrados que combinados com a experiência dos profissionais da área, possibilite realizar o diagnóstico preciso na detecção do câncer de mama. O objetivo do presente trabalho é aplicar as técnicas RNAs e SVM de sorte a auxiliar na interpretação diagnóstica das microcalcificações detectadas em mamografia de rastreamento. O conjunto utilizado nesse estudo consiste de 569 dados, proveniente de pacientes com suspeita de câncer de mama obtidos junto ao Instituto de Radiologia da Universidade Erlangen-Nuremberg, no período de 2003 a 2006. O banco de dados possui informações clínicas sobre raio, textura, perímetro, área, suavidade, compacidade, concavidade, côncavo, simetria e dimensão fractal. Os dados foram divididos em dois grupos: o conjunto de treinamento composto por 75% das amostras de exames mamográficos e o conjunto de teste independente, com 25% das amostras restantes. As técnicas desenvolvidas foram implementadas utilizando-se o software R. De acordo com a análise dos resultados foi possível evidenciar o desempenho promissor da SVM, que obteve na sua melhor simulção uma acurácia acima de 98%, no que tange aos valores de Falsos Negativos o melhor valor obtido foi 1,96%. Contudo, o modelo utilizando as Redes Neurais MLP apresentou na sua melhor simulação uma acurácia acima de 96% e no que tange aos valores de Falsos Negativos o melhor valor obtido também foi de 2%, sendo assim sua utilização relevante. Houve diferença estatística significante a nível de 95% (p-valor <0,05) no desempenho do modelo das Redes SVM e Rede Neural MLP na métrica acurácia. Indicando um melhor desempenho da Rede SVM. Não houve diferença estatística significativa entre os resultados referentes a determinação dos valores Falso Negativo entre as Redes. |