Investigações computacionais do polimorfismo da glicina em meio interestelar: equilíbrio de fases e reações em superfícies

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Xavier Junior, Neubi Francisco lattes
Orientador(a): Bauerfeldt, Glauco Favilla
Banca de defesa: Bauerfeldt, Glauco Favilla, Sant’Anna, Carlos Mauricio Rabello de, Leitão, Alexandre Amaral, Oliveira Júnior, Ricardo Rodrigues de, Rocha, Ivan Guilhon Mitoso
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de Pós-Graduação em Química
Departamento: Instituto de Química
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://rima.ufrrj.br/jspui/handle/20.500.14407/10250
Resumo: Glicina, o aminoácido mais simples, já foi detectada em amostras de meteoritos e cometas. A compreensão acerca de sua presença, apenas em fase sólida, no meio interestelar (ISM) é, entretanto, limitada pela falta de estudos acerca de sua reatividade neste ambiente. Desta forma, este trabalho foi desenvolvido com o objetivo de investigar, através de métodos computacionais, o equilíbrio termodinâmico dos polimorfos α-, β- e γ-glicina, e sua reatividade na interface sólido-gás, em condições análogas às encontradas no meio interestelar. Cálculos foram conduzidos em nível PBE-D3 e adotando um pseudopotencial Ultrasoft de Vanderbilt para o tratamento dos elétrons das camadas internas. Valores de energia cinética de corte foram testados e convergidos para 80 Ry. Uma amostragem de pontos k da rede recíproca de 4 x 2 x 4, 4 x 3 x 4 e 3 x 3 x 4 foi assumida para α-, β- e γ-glicina, respectivamente. As propriedades vibracionais foram obtidas através de cálculos de densidade de estado de fônons (PHDOS) e adotando a aproximação quase-harmônica para a obtenção das propriedades termodinâmicas para a fase sólida. Os valores de entropia calculados foram ligeiramente menores do que os experimentais, com desvios absolutos de 5,27, 0,13 e 5,42 e J mol-1 K-1, para α-, β- e γ-glicina, respectivamente, a 298,15 K. Foi obtida a diferença S – S igual a 0,44 J mol-1 K-1, em bom acordo com o dado experimental, 0,35 J mol-1 K-1, a 298,15 K. Valores de energia livre de Gibbs foram obtidos na faixa entre 50 a 500 K e pressão de 1 bar, sendo possível observar o correto ordenamento de estabilidade entre as fases cristalinas: γ > α > β. A transição γ → α foi observada em 442,55 K, em excelente acordo com o valor experimental de 440 K. Propriedades de sublimação foram investigadas levando em consideração a transformação da forma zwitteriônica, presente na fase cristalina, até a forma não iônica, mais estável em fase gasosa. Valores de temperatura de sublimação foram estimados a partir da equação de Clausius-Clapeyron, obtendo um desvio absoluto máximo de -5.31 K para a α-glicina, na faixa de pressão entre 0,1 e 1 Pa, em comparação com valores experimentais. Reações de decomposição de glicina formando CO2 e CH3NH2, em uma superfície de (010) de α-glicina, foram investigadas. Para tal, uma expansão 3 x 3 da superfície contendo 4 camadas de glicina foi considerada. Uma amostragem de pontos k de 2 x 2 x 1 foi adotada. A reação de descarboxilação procedeu através de 4 etapas, cujas barreiras foram de 30,01, 39,63, 112,10 e 108,83 kJ mol-1, respectivamente. Em comparação com as reações em fase gasosa, as reações em superfície tiveram uma diminuição da barreira de descarboxilação por aproximadamente 200 kJ mol-1, enquanto a de formação de glicina mostra uma barreira até 100 kJ mol-1 menor. Através do bom acordo obtido nas investigações computacionais, é possível concluir que o modelo da reatividade sólido-sólido e sólido-gás da glicina, proposto nesse trabalho, pode ser adotado para futuras investigações da reatividade de aminoácidos no ISM.