Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Rosa, Wanderson
 |
Orientador(a): |
Weberszpil, José |
Banca de defesa: |
Vera-Tudella, Carlos Andrés Reyna,
Helayël-Neto, José Abdalla |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal Rural do Rio de Janeiro
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Modelagem Matemática e Computacional
|
Departamento: |
Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://rima.ufrrj.br/jspui/handle/20.500.14407/14341
|
Resumo: |
Nas últimas décadas, diversos formalismos foram usados para descrever sistemas complexos. Dentre os quais, podem ser citados o cálculo fracionário e as derivadas defor-madas. Ambos mostraram resultados positivos na modelagem de sistemas complexos. No entanto, o cálculo fracionário é definido a partir de operadores não locais e, portanto, não satisfaz algumas propriedades das derivadas usuais; como, por exemplo, a regra do pro-duto e a regra da cadeia. As derivadas deformadas são operadores locais e se apresentam como um pré-fator multiplicado por uma derivada usual. No caso de uma deformação no espaço das variáveis, este pré-fator depende da variável independente e de um parâmetro de deformação. Se a deformação for no espaço das funções o pré-fator será dependente da função que está sendo derivada e do parâmetro de deformação. Os operadores gerados nesses dois casos são duais entre si. Os operadores gerados no primeiro caso tem conexão com a derivada de Hausdor˙, com o mapeamento no fractal continuo e satisfazem todas as propriedades básicas de derivada. Aqui, estes serão tratados como derivadas deformadas. Os operadores gerados no segundo caso serão tratados como derivadas deformadas duais. Neste trabalho serão propostos formalismos de cálculo deformado. Como ponto de par-tida será tomado um operador generalizado de derivada deformada e de dois de seus casos particulares, bem como as formas duais dos mesmos. Serão propostas derivadas, integrais e funções deformadas e após isso serão propostas abordagens variacionais deformadas. Por fim, aplicações tanto em física quanto em outras áreas serão propostas a partir dos formalismos de cálculo deformado e deformados duais. |