Modelagem do crescimento de truta arco-íris na fase de engorda

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Janampa-Sarmiento, Peter Charrie lattes
Orientador(a): Pereira, Marcelo Maia lattes
Banca de defesa: Silva, Vinícius Pimentel lattes, Mansano, Cleber Fernando Menegasso lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de Pós-Graduação em Zootecnia
Departamento: Instituto de Zootecnia
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://rima.ufrrj.br/jspui/handle/20.500.14407/14864
Resumo: A utilização de modelos matemáticos através do uso de equações não lineares é uma importante ferramenta para representar o crescimento animal. No presente estudo foram utilizados quatro modelos não lineares (Gompertz, Von Bertalanffy, Logístico e Brody) para modelar o crescimento em peso e comprimento de truta arco-íris (Oncorhynchus mykiss) durante 98 dias de cultivo na fase de engorda em condições de cultivo comercial. Esses modelos possuem 03 parâmetros: A (peso “g” ou comprimento “cm” na primeira maturação do peixe), B (Índice de precocidade), T (idade “dias” em que a taxa de crescimento é máxima, nos modelos Logistico e Gompertz), K (parâmetro de integração sem interpretação biológica, nos modelos Brody e Bertalanffy). Foram mantidas 900 trutas com peso e comprimento médio inicial e idade pós-eclosão de 122,11 ± 15,6g; 22,42 ± 0,71cm; e 273 dias, respectivamente, em nove tanques de material nobre, sendo que a cada três tanques foram alimentados com 03 rações comerciais diferentes. O ajuste baseou-se na teoria dos Mínimos Quadrados por meio do método iterativo de Marquardt. Os prodecimentos computacionais foram realizados pelo PROC NLIN do SAS. Foram realizados três níveis de analises para peso e comprimento a fim de testar a robusticidade do ajuste dos modelos utilizados: i) análiseindividual de cada tanque), ii) análises de três tanques submetidas a uma mesma ração, e iii) análise que envolve todos os tanques. A avaliação dos modelos ajustados foi procedida por critérios de ajustes: capacidade de convergência, coeficiente de determinação (R2), quadrado médio do resíduo (QMR), critério de Akaike (AIC), desvio médio absoluto dos resíduos(DMA), erro porcentual médio (EPM), a congruência e utilidade das informações geradas pelo modelo ajustado respeito ao crescimento biológico da truta, e examinação e distribuição dos resíduos e resíduos studentizados. Só os modelos Logistico, Gompertz e Bertalanffy convergeram aos dados em peso para cada um dos níveis, dos quais os parâmetros A (≤580,10 - 714,10≥), B (≤0,0196 - 0,0346≥) e T (≤311,80 - 341,40≥) obtidos pelo modelo Logístico atingiram os melhores valores dos avaliadores de ajuste (R2≤0,9460 – 0,8051≥; QMR ≤2889,60 - 1223,80≥; AIC ≤14062,06 - 1391,37≥; DMA ≤35,92 - 24,59≥). Já para dados em comprimento, se observaram casos de não convergência em todos os modelos nos níveis 1 e 2, entretanto os parâmetros A (≤39,63 - 387,30≥), B (≤0,0041 - 0,0144≥) e T (≤255,20 -959,80≥) obtidos pelo modelo Logístico atingiram os melhores valores dos avaliadores de ajuste (R2≤0,9984 – 0,9970≥; QMR ≤2,20 - 1,18≥; AIC ≤1395,20 – 37,48≥; DMA ≤1,08 -0,82≥). Conclui-se que informações em peso tiveram maior capacidade de se ajustar ao modelo Logístico, apesar que esse modelo tem tendência à superestimativa (EPM ≤-1,00 - - 3,78≥) e presença de valores discrepantes. Finalmente, observou-se que os dados em comprimento se apresentaram com um padrão de distribuição demais complexos e, portanto, os dados apresentaram dificuldade em se ajustar em todos os modelos, sendo não recomendáveis para modelar o crescimento em comprimento em truta arco-íris na fase de engorda.