Avaliação de Modelos Cinéticos para Combustão de Etanol e Butanol e Implicações em Química Atmosférica

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Machado, Gladson de Souza lattes
Orientador(a): Bauerfeldt, Glauco Favilla lattes
Banca de defesa: Martins, Eduardo Monteiro, Baptista, Leonardo, Corrêa, Sérgio Machado
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de Pós-Graduação em Química
Departamento: Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://rima.ufrrj.br/jspui/handle/20.500.14407/14676
Resumo: Apesar da vantagem econômica relacionada à produção de etanol no Brasil, este biocombustível apresenta algumas desvantagens como higroscopicidade, baixo ponto de fulgor, alta pressão de vapor e corrosividade. Por isso, sua substituição pelo n-butanol se encontra em discussão. Em contrapartida, uma análise comparativa dos perfis de combustão de etanol e butanol ainda não foi relatada na literatura. Neste trabalho foi realizada a análise do mecanismo de combustão do n-butanol através da análise das velocidades das reações e análise de sensibilidade. Foram também avaliados os tempos de ignição e emissão de poluentes (aldeídos, monóxido de carbono, hidrocarbonetos e NOx) na simulação de motores no ciclo Otto para a combustão do butanol e do etanol inciada por centelha. O programa kintecus® foi utilizado para resolver o sistema de equações diferenciais ordinárias provenientes do modelo cinético. A revalidação do modelo cinético foi realizada, através da comparação do tempo de ignição calculado com dados experimentais, sendo obtido excelente acordo. A análise de velocidades das reações do mecanismo e a análise de sensibilidade foram realizadas com uma mistura de n-butanol e oxigênio em proporção estequiométrica diluída em nitrogênio, com temperatura e pressão inicial de 1199K e 3,18 atm. Os resultados destas análises indicam que o mecanismo é iniciado pelas reações de dissociação das ligações CC. Na fase da propagação, os átomos de hidrogênio e radicais hidroxil desempenham um papel fundamental em reações de abstração de hidrogênio. Por fim, na fase da terminação, as reações de formação de espécies estáveis (H2, H2O e CO2) se mostraram dominantes. Além disso, a reação H + O2  OH + O se mostrou de alta relevância para o tempo de ignição. As simulações da combustão de n-butanol e etanol em um ciclo Otto ideal foram realizadas para seis taxas de compressão, variando de 7:1 para 12:1. Foram obtidos tempos de ignição entre 3,1410-5 e 7,0410-5 segundo para o n-butanol e variou entre 5,5910-2 e 8,5910-5 segundo para o etanol. Em relação à emissão de poluentes atmosféricos, o percentual de monóxido de carbono nos gases de combustão do n-butanol variou entre 4,21% e 7,16%, entanto para o etanol a variação foi de 0,69% a 2,73%. A emissão de aldeídos na combustão do butanol variou entre 1,55104 e 4,84104 ppbv, enquanto no etanol variou entre 3,44102 e 8,00103 ppbv. Para a emissão de NOx, o butanol apresentou valores entre 3,46103 e 5,25103 ppm, para o etanol variou entre 2,25103 e 9,01103 ppm. Os menores valores obtidos para emissão de poluentes da combustão do etanol ocorreram na taxa de compressão onde o aumento inicial da temperatura não ocorreu de forma tão acentuada. Dessa forma, conclui-se que ambos os combustíveis possuem perfis de combustão semelhantes e, de acordo com esse mecanismo e com o modelo proposto para centelha, a queima do butanol emite menos NOx, enquanto que a queima do etanol emite menos aldeídos e monóxido de carbono.