Mapeamento digital de atributos do solo em áreas remotas sob Floresta Amazônica: um estudo de caso na formação Solimões

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Ferreira, Ana Carolina de Souza lattes
Orientador(a): Ceddia, Marcos Bacis lattes
Banca de defesa: Ceddia, Marcos Bacis lattes, Pinheiro, Helena Saraiva Koenow lattes, Carvalho Junior, Waldir de lattes, Costa, Elias Mendes lattes, Brandão, Diego Nunes lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de Pós-Graduação em Agronomia - Ciência do Solo
Departamento: Instituto de Agronomia
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://rima.ufrrj.br/jspui/handle/20.500.14407/9048
Resumo: Atualmente a procura pelo mapeamento digital de solos (MDS) tem crescido consideravelmente nos estudos ambientais. Diante dessas demandas e a falta de informações sobre os solos em escala adequada, é mais que necessário o desenvolvimento de pesquisas, técnicas e métodos que permitam auxiliar no estudo de solos e seus atributos. Este estudo foi divido em dois capítulos, a saber: o primeiro capítulo teve como objetivo avaliar a aplicação de modelos de aprendizagem de máquina (AM) na predição de estoque de carbono do solo a 30cm (SOCS30) e 100cm (SOCS100) de profundidade e no segundo capítulo na predição da composição granulométrica do solo em superfície e subsuperfície. Os objetivos específicos foram: comparar duas formas de distribuição de dataset: área de referência (AR) e área total (AT), avaliar duas categorias de seleção de covariável: "método wrapper" e "seleção prévia de covariável" como etapa de pré-processamento, antes da calibração do AM e avaliar o desempenho de três algoritmos de AM: “Regression Tree” (RT), “Random Forest” (RF) e “Support Vector Machine” (SVM) na modelagem dos atributos do solo. O local do estudo foi dividido em três blocos, denominados blocos Urucu, Araracanga e Juruá. O conjunto de dados consistiu em 120 observações de estoque de carbono e 151 observações de composição granulométrica combinadas com 21 covariáveis (20 covariáveis de relevo e 1 índice derivado da banda P do radar) que foram abordadas em dois datasets diferentes: (AR) e (AT). A similaridade entre a AR e a paisagem dos blocos foi avaliada por meio do índice geral de Gower e a estatística descritiva das covariáveis. Os resultados mostraram que o uso da seleção de covariáveis, combinada com o uso de conjunto de dados da AR, permitiram desenvolver modelos mais precisos para prever a maior parte dos atributos mapeados. De acordo com o índice geral de Gower, a AR possui alta similaridade com os blocos Urucu, Araracanga e Juruá. Entretanto, as estatísticas mostraram que aumentando a distância da AR, algumas covariáveis de relevo são mais diferentes. No primeiro capítulo os modelos de predição desenvolvidos para predizer o SOCS100 apresentaram maior acurácia e transferibilidade do que aqueles desenvolvidos para predizer o SOCS30. O algoritmo RF gerou os mapas mais acurados de SOCS100 para os Blocos de Urucu e Juruá (R2 = 0,70 e 0,51, respectivamente). Os valores de SOCS100 dos mapas gerados para a região do Bloco de Urucu variaram de 3,89 kg C. m-2 a 10,64 kg C .m-2, enquanto para o bloco Juruá variaram de 5,03 kg C. m-2 a 10,42 kg C. m-2. No capítulo 2 o melhor desempenho também foi obtido com o algoritmo RF na predição de silte em superfície e subsuperfície para os Blocos Urucu e Juruá (R2 = 0,58 e 0,52, 0,51 e 0,56 respectivamente). Os valores de silte superficial e subsuperficial dos mapas gerados para a região do Bloco Urucu variaram de 208,97 g kg-1 a 576,68 g kg-1 e 215,32 g kg-1 a 517,06 g kg-1, enquanto para o bloco Juruá variaram de 236,10g kg-1 a 555,70 g kg-1 e 229,83 g kg-1 a 460,56 g kg-1, respectivamente. Apesar da baixa densidade de observação do conjunto de dados disponível, os resultados mostram não só a importância dos algoritmos de AM para mapear os atributos do solo, mas também do uso de conhecimento pedológico especializado gerado em uma AR para apoiar uma seleção de covariáveis antes de calibrar os algoritmos.