Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Costa, Leandro Rochink |
Orientador(a): |
Aloise, Daniel |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufrn.br/jspui/handle/123456789/21976
|
Resumo: |
Após vários avanços na tecnologia de captação e armazenamento de dados e do crescimento de aplicações que provêm novas informações, o número de elementos informacionais disponíveis é enorme tanto em volume quanto em variedade. Com esse aumento na quantidade de informações, a necessidade de entendê-los e resumi-los se tornou cada vez mais urgente. O Agrupamento Balanceado de Dados, do inglês Balanced Clustering, visa encontrar grupos de entidades similares que possuam aproximadamente o mesmo tamanho. Neste trabalho, é proposta uma nova abordagem heurística baseada na metaheurística Busca em Vizinhança Variável, do inglês Variable Neighborhood Search (VNS), e na metodologia Menos é mais, do inglês Less is more approach, para o problema de agrupamento de dados usando o critério da soma mínima das distâncias quadráticas com restrição de balanceamento dos grupos. Os algoritmos encontrados na literatura não são escaláveis ao passo que aumentamos o tamanho do problema para além de 5000 elementos de acordo com experimentos realizados nesta pesquisa. Os experimentos computacionais mostram que o método proposto supera o atual estado da arte neste problema. |