MARISA-MDD: uma abordagem para transformações entre modelos orientados a aspectos: dos requisitos ao projeto detalhado

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Medeiros, Ana Luisa Ferreira de
Orientador(a): Batista, Thais Vasconcelos
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Programa de Pós-Graduação: Programa de Pós-Graduação em Sistemas e Computação
Departamento: Ciência da Computação
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/17979
Resumo: Aspect Oriented approaches associated to different activities of the software development process are, in general, independent and their models and artifacts are not aligned and inserted in a coherent process. In the model driven development, the various models and the correspondence between them are rigorously specified. With the integration of aspect oriented software development (DSOA) and model driven development (MDD) it is possible to automatically propagate models from one activity to another, avoiding the loss of information and important decisions established in each activity. This work presents MARISA-MDD, a strategy based on models that integrate aspect-oriented requirements, architecture and detailed design, using the languages AOV-graph, AspectualACME and aSideML, respectively. MARISA-MDD defines, for each activity, representative models (and corresponding metamodels) and a number of transformations between the models of each language. These transformations have been specified and implemented in ATL (Atlas Definition Language), in the Eclipse environment. MARISA-MDD allows the automatic propagation between AOV-graph, AspectualACME, and aSideML models. To validate the proposed approach two case studies, the Health Watcher and the Mobile Media have been used in the MARISA-MDD environment for the automatic generation of AspectualACME and aSideML models, from the AOV-graph model