Utilizando comitês de classificadores para predição de rendimento escolar

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Nogueira, Priscilla Suene de Santana
Orientador(a): Canuto, Anne Magaly de Paula
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/19928
Resumo: A mineração de dados educacionais (MDE) é um domínio de aplicação na área de Inteligência artificial que tem sido bastante explorado na atualidade. Os avanços tecnológicos e em especial, a crescente utilização dos ambientes virtuais de aprendizagem têm permitido a geração de consideráveis quantidades de dados a serem investigados. Dentre as atividades a serem tratadas nesse contexto está a predição de rendimento escolar de estudantes, a qual pode ser realizada através do emprego de técnicas de aprendizado de máquina. Tais técnicas podem ser utilizadas para classificação dos estudantes em rótulos previamente definidos. Uma das estratégias para aplicação dessas técnicas consiste em combiná-las no projeto de sistemas multiclassificadores, cuja eficiência pode ser comprovada por resultados já alcançados em outros trabalhos realizados em diversas áreas, tais como: medicina, comércio e biometria. Os dados utilizados nos experimentos foram obtidos por meio das interações entre estudantes em um dos mais utilizados ambientes virtuais de aprendizagem denominado moodle. Diante desse breve panorama, o presente trabalho apresenta resultados de diversos experimentos que incluem o emprego de sistemas multiclassifcadores específicos, denominados comitês de classificadores, desse modo visando alcançar melhores resultados na predição de rendimento escolar, ou seja, na busca por maiores percentuais de acurácia na classificação dos estudantes; apresentando uma significativa exploração de dados educacionais e análises relevantes advindas desses experimentos.