Planejamento de trajetórias e navegação de robôs móveis
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
Brasil UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufrn.br/jspui/handle/123456789/20929 |
Resumo: | Oil exploration at great depths requires the use of mobile robots to perform various operations such as maintenance, assembly etc. In this context, the trajectory planning and navigation study of these robots is relevant, as the great challenge is to navigate in an environment that is not fully known. The main objective is to develop a navigation algorithm to plan the path of a mobile robot that is in a given position (, ) and should reach the desired position (, ) avoiding colision with any obstacle standing in the way. The global route was generated using a genetic algorithm, which takes into account only the coordinates of the checkpoints. The mobile robot path generation based on Bézier curves was able to dodge the possible obstacles in the way. There was no information about the obstacles’s shape or location during the implementation of the program yet the robot must generate local path based on information from proximity sensors located around the robot to be able to avoid collisions. This strategy is valid in the situation where the obstacles are small relative distances between the visited sites. The results of simulations and experiments with a real mobile robot shown that the robot was able to perform the route defined by the genetic algorithm, dodging obstacles by Bezier curves and reaching the desired positions within the margin of error defined as acceptable. The main contributions of this work are the equations used to define the control points in the online calculation of Bezier curves in the planner of local routes, linked to a global route planner with obtaining experimental results. |