Problema de mapeamento e roteamento: propostas de otimização bioinspiradas híbridas

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Rocha, Hiago Mayk Gomes de Araújo
Orientador(a): Pereira, Mônica Magalhães
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/27778
Resumo: MPSoCs baseados em NoCs são sistemas capazes de prover a execução de aplicações paralelas com alto desempenho devido ao seu paralelismo inerente. Contudo, para se obter alto desempenho nas execuções, é necessário um eficiente gerenciamento dos recursos disponíveis no sistema, como núcleos de processamento e canais de comunicação. Neste trabalho é abordado o Problema de Mapeamento de tarefas e Roteamento das comunicações (PMR), o qual une características de alocação de tarefas e roteamento para a construção de estratégias de otimização que reduzam a latência de comunicação. A formulação matemática do PMR é apresentada neste trabalho. Além disso, usando a parte de roteamento dessa formulação, são propostas três Math-Heurísticas bioinspiradas (Genético, Memético e Transgenético) para o mapeamento estático de tarefas. Essas estratégias apresentam abordagens gerais para encontrar soluções de mapeamento e dentro delas a parte de roteamento da formulação do PMR é usada como uma avaliação de fitness exato. No contexto de mapeamento dinâmico, são propostas duas heurísticas (TransCand e TransEndo) que usam a metáfora dos Algoritmos Transgenéticos (AT) para prover alocação de tarefas por demanda em tempo de execução. Todas as propostas de algoritmos deste trabalho foram implementados e seus resultados foram simulados em uma ferramenta de NoC. Além disso, também foram implementados quatro algoritmos da literatura para fins de comparação com as propostas apresentadas, sendo três para mapeamento estático e um para o dinâmico. Os resultados demonstram que as propostas que conseguem capturar mais profundamente as características da arquitetura são mais eficientes. Em específico para a alocação estática, o Transgenético apresenta melhores resultados de latência média e máxima. Já para a alocação dinâmica, ambas as propostas apresentam resultados satisfatórios. Contudo, o TransEndo se mostrou mais eficiente tanto no tempo de otimização quanto na qualidade das soluções geradas.