Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Araújo, Renan Pires de |
Orientador(a): |
Salazar, Andres Ortiz |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E ENGENHARIA DE PETRÓLEO
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufrn.br/jspui/handle/123456789/23718
|
Resumo: |
A passagem de um PIG é uma técnica bastante empregada na inspeção de dutos de longo comprimento e principalmente enterrados, valendo-se do diferencial de pressão sobre o mesmo para impulsioná-lo. Porém, durante a inspeção, um dos problemas que pode ocorrer é a parada do PIG por causa de incrustações severas ou defeitos de fabricação/instalação dos dutos, fazendo com que o instrumento pare e sua posterior liberação com altas velocidades devido ao acúmulo de pressão à montante. Este trabalho propõe o uso de redes neurais artificiais a fim de modelar a relação entre o diferencial de pressão sobre o PIG e sua velocidade durante o seu trajeto no interior do duto. Para tanto, foi empregado um sistema supervisório para a captura dos dados de pressão ao longo da tubulação de teste e um odômetro acoplado ao PIG para a dos dados de velocidade. Foram considerados dois modelos de redes neurais artificiais, no caso a rede MLP e a rede NARX, sendo esta última uma rede recursiva. Os resultados de treinamento e validação mostraram que os modelos por redes neurais artificiais foram eficientes para estimar a velocidade do PIG. |