Roteamento multicast multisessão: modelos e algoritmos

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Andrade, Romerito Campos de
Orientador(a): Goldbarg, Marco Cesar
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/25734
Resumo: A tecnologia multicast tem sido amplamente estudada ao longo dos anos e apresenta-se como uma solução para melhor utilização dos recursos da rede. Várias abordagens já foram avaliadas para o problema de roteamento desde o uso de uma sessão com apenas uma fonte a um cenário com múltiplas sessões e múltiplas fontes por sessão. Neste trabalho, é feito um estudo dos modelos matemáticos para o problema com múltiplas sessões e múltiplas fontes. Dois modelos matemáticos foram propostos: uma versão multissessão mono-objetivo que visa a otimização da capacidade residual sujeito a um limite de custo e uma versão multiobjetivo com três funções-objetivo. Ambos os modelos levam em conta o cenário multissessão com uma fonte por sessão. Além disso, um estudo algorítmico foi realizado sobre um modelo da literatura que utiliza múltiplas fontes por sessão. Três conjuntos de algoritmos foram propostos. O primeiro conjunto trata do problema mono-objetivo proposto e considera as abordagens ACO, Genético, GRASP e ILS. O segundo conjunto consiste dos algoritmos propostos para o modelo multiobjetivo. Foram projetados os seguintes algoritmos: NSGA2, ssNSGA2, GDE3, MOEA/D e SMS-EMOA. Além disso, foi projetado um algoritmo transgenético com subpopulações baseadas em operadores de criação de solução direcionados por objetivos do problema. Também foi utilizado o conceito de soluções de elite. No total, 8 versões do algoritmo transgenético foram avaliadas. O terceiro conjunto de algoritmos consiste da heurística MMVD proposta para o modelo da literatura com múltiplas fontes por sessão. Esta heurística é baseada no uso de diagramas de Voronoi. O processo experimental foi realizado com amplo número de instâncias configuradas de modo a avaliar diferentes situações. Os resultados foram comparados utilizando métodos estatísticos não-paramétricos. A análise final indicou que o ILS e o Genético obtiveram resultados muito similares, entretanto o ILS possui melhor tempo de processamento. A versão cross0 do algoritmo transgenético obteve o melhor resultado em praticamente todos os cenários avaliados. A heurística MMVD obteve excelentes resultados sobre algoritmos da literatura.