Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Germano, Amanda Lucena |
Orientador(a): |
Oliveira, Luiz Affonso Henderson Guedes de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufrn.br/jspui/handle/123456789/24547
|
Resumo: |
Com a necessidade do aumento da qualidade dos produtos e do desempenho dos processos, o grau de automação cresceu bastante nas indústrias. Com isso, os sistemas estão cada vez mais complexos e vêm acompanhados por problemas difíceis de resolver devido à alta dimensionalidade desses sistemas e do grande volume do fluxo de informações necessárias, além da aleatoriedade de falhas e defeitos. Uma falha inesperada pode levar a riscos operacionais, por isso a importância de detectar e localizar a falha, principalmente quando a planta industrial ainda está operando em uma região controlável e é possível agir para trazer o processo de volta para o estado normal, seguro e operacional. Assim, é desejável que o sistema de detecção de falhas forneça respostas rápidas e confiáveis com um esforço computacional adequado para processamento em tempo real, mesmo necessitando tratar com grandes quantidades de dados. Para trabalhar com grandes quantidades de dados em tempo real, surgiu o modelo de fluxo de dados, que consiste de uma sequência ordenada de pontos que só podem ser lidos apenas uma ou algumas poucas vezes. Essa área cresceu bastante nos últimos anos, principalmente devido a grande quantidade de sistemas que precisavam tratar com dados desse tipo, que incluem desde dados do mercado financeiro, registros telefônicos, transações web a dados médicos, redes de sensores ou mesmo dados multimídia. Diante da relevância do tema de detecção de falhas, nessa tese foram utilizados o TEDA (Typicality and Eccentricity Data Analytics), o RDE (Recursive Density Estimation) e o R-PCA (Recursive Principal Component Analysis) como ferramentas para detecção de falhas em processos industriais. Para a análise do desempenho de cada uma dessas abordagens foi utilizado o clássico benchmark Tennessee Eastman Process. |