Implementação de funcionalidades para uma plataforma de análise de variantes e novos métodos para prover melhor acurácia na identificação de mutações patogênicas

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Nascimento, Priscilla Machado do
Orientador(a): Souza, Jorge Estefano Santana de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM BIOINFORMÁTICA
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/26359
Resumo: Os atuais avanços científicos, no âmbito da genômica, têm sido proporcionados devido à crescente extração de informações significativas do DNA, em virtude do uso das novas tecnologias disponibilizadas para realização da análise dos dados genéticos. Considerando que um dos desafios atuais da medicina de precisão é identificar quais das mutações detectadas pelo processo de sequenciamento têm um papel possível na resposta a um tratamento, na tumorigênese ou no diagnóstico, propomos que através desse estudo fosse implementado um componente de melhora de um produto de software (ViVa), responsável por oferecer assistência aos dados coletados. Foi aprimorado, com o intuito de tornar as análises mais eficientes e sua visualização mais precisa. Este trabalho propõe a implementação de novas funcionalidades que agreguem valor ao produto, contribuindo diretamente na automatização e aperfeiçoamento dos processos realizados pelas ferramentas de análise de variantes disponíveis no mercado. Visando uma aplicabilidade prática do que foi desenvolvido, foi proposta uma análise dos dados públicos utilizados para anotar os variantes desse sistema. Para isso, foi realizado um estudo referente aos dados dos preditores existentes, através do qual foi identificado que a acurácia média dos preditores gira em torno de 85%. Porém, apesar desta taxa ser consideravelmente alta, também foi possível observar que existe um alto grau de discordância entre os preditores em relação a identificação do impacto mutacional e sua patogenicidade. Com o intuito melhorar essa acurácia, descrevemos a criação de uma árvore de decisão, e a discretização de características (atributos provenientes de integração das bases de dados). Nos testes realizados, quando comparamos os resultados obtidos em nossa árvore de decisão com os preditores, a nossa árvore de decisão alcançou a maior precisão em todas as variáveis testadas: verdadeiros neutros 87%, falsos neutros 6%, falsos patogênicos 13%, verdadeiros patogênicos 94%.