Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Morais, Diego Arthur de Azevedo |
Orientador(a): |
Dalmolin, Rodrigo Juliani Siqueira |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM BIOINFORMÁTICA
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufrn.br/jspui/handle/123456789/25721
|
Resumo: |
O transcriptograma, um método utilizado na análise de transcriptomas, utiliza dados de interação proteína-proteína para construir uma lista ordenada de genes. Nesta lista, genes são posicionados de forma que a probabilidade de interação entre seus produtos decaia exponencialmente com o aumento da distância entre suas posições. A lista ordenada de genes é então utilizada para calcular o valor de expressão médio de genes funcionalmente associados numa janela com raio configurável, permitindo a expressão diferencial de grupos gênicos não pré-definidos em estudos caso-controle. O objetivo deste estudo é a implementação de um pacote em R que use transcriptogramas e integre funcionalidades de pacotes já conhecidos pela comunidade científica, capaz de realizar: expressão diferencial, enriquecimento funcional, e visualização de rede. O pacote transcriptogramer foi implementado e encontra-se disponível no Bioconductor, um repositório para softwares open source desenvolvidos na linguagem R para utilização em bioinformática. Numa comparação entre o transcriptogramer e um pipeline combinando funcionalidades dos pacotes limma e topGO, observou-se que o transcriptogramer identificou aproximadamente 10 vezes mais termos do Gene Ontology significativamente enriquecidos, dentre os quais foram encontrados a maioria dos termos identificados pelo pipeline convencional. |