Detalhes bibliográficos
Ano de defesa: |
2003 |
Autor(a) principal: |
Cavalcanti, Anderson Luiz de Oliveira |
Orientador(a): |
Maitelli, André Laurindo |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica
|
Departamento: |
Automação e Sistemas; Engenharia de Computação; Telecomunicações
|
País: |
BR
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufrn.br/jspui/handle/123456789/15425
|
Resumo: |
The present work presents the study and implementation of an adaptive bilinear compensated generalized predictive controller. This work uses conventional techniques of predictive control and includes techniques of adaptive control for better results. In order to solve control problems frequently found in the chemical industry, bilinear models are considered to represent the dynamics of the studied systems. Bilinear models are simpler than general nonlinear model, however it can to represent the intrinsic not-linearities of industrial processes. The linearization of the model, by the approach to time step quasilinear , is used to allow the application of the equations of the generalized predictive controller (GPC). Such linearization, however, generates an error of prediction, which is minimized through a compensation term. The term in study is implemented in an adaptive form, due to the nonlinear relationship between the input signal and the prediction error.Simulation results show the efficiency of adaptive predictive bilinear controller in comparison with the conventional. |