Análise do desgaste em amostras de ensaios de lubricidade utilizando processamento de imagens

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Jácome, Maxwell Cavalcante
Orientador(a): Oliveira Júnior, José Josemar de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufrn.br/handle/123456789/32368
Resumo: Ensaios tribológicos são desenvolvidos como forma controlada de avaliar o mecanismo de desgaste atuante entre superfícies metálicas, bem como para observar a influência do tipo de lubrificante utilizado. A lubricidade é uma importante característica para avaliação de fluidos lubrificantes, padronizada por norma e medida pelo equipamento HFRR (High Frequency Reciprocating Rig). Trata-se de um sistema tribológico esfera-disco em contato lubrificado, e que produz como resultado imagens das quais se extrai o diâmetro da escara de desgaste, do inglês WSD (Wear Scar Diameter). A partir de um conjunto de amostras de diferentes combustíveis aplicados como lubrificantes, foram obtidas imagens das superfícies desgastadas. Desse modo, propõe-se neste trabalho explorar outras características das imagens além do WSD, permitindo assim uma melhor caracterização do desgaste e do tipo de lubrificante utilizado. Com as imagens adquiridas no ensaio de lubricidade, foram aplicadas técnicas de processamento de imagens utilizando o software Matlab e a biblioteca OpenCV para a obtenção de parâmetros quantitativos. A partir dessas informações, foi construída uma Rede Neural Artificial capaz de classificar novas imagens de acordo com o tipo de combustível utilizado no ensaio com uma eficiência média de 75%, mostrando o potencial da inteligência artificial para identificar e classificar padrões de desgaste a partir da análise de suas imagens.