Implementação de uma arquitetura fuzzy neural em hardware com treinamento online

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Prado, Rafael Nunes de Almeida
Orientador(a): Melo, Jorge Dantas de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/19280
Resumo: Os métodos de Inteligência Computacional vêm adquirindo espaço nas aplicações industriais devido a sua capacidade de solução de problemas na engenharia, conseqüentemente, os sistemas embarcados acompanham a tendência do uso das ferramentas computacionais inteligentes de forma embarcada em máquinas. Existem diversos trabalhos na área de sistemas embarcados e sistemas inteligentes puros ou híbridos, porém, são poucos os que uniram ambas as áreas em um só projeto. O objetivo deste trabalho foi implementar um sistema fuzzy neural adaptativo em hardware com treinamento online para embarque em Field Programable Gate Array - FPGA. A adaptação do sistema pode ocorrer durante a execução de uma determinada aplicação, visando melhora do desempenho de forma online. A arquitetura do sistema é modular, possibilitando a configuração de várias topologias de redes fuzzy neurais com treinamento online. Verificou-se que o sistema proposto obteve desempenho satisfatório quando aplicado a problemas de interpolação, classificação de padrões e a problemas industriais. Diante dos resultados dos experimentos foram discutidas as vantagens e desvantagens do treinamento online em hardware ser realizado de forma paralela e serializada, esta última forma proporcionou economia na área utilizada de FPGA, já a forma de treinamento paralelo demonstrou alto desempenho e reduzido tempo de processamento. O trabalho utilizou ferramentas de desenvolvimento disponíveis para circuitos FPGA.