Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Prado, Rafael Nunes de Almeida |
Orientador(a): |
Melo, Jorge Dantas de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufrn.br/jspui/handle/123456789/19280
|
Resumo: |
Os métodos de Inteligência Computacional vêm adquirindo espaço nas aplicações industriais devido a sua capacidade de solução de problemas na engenharia, conseqüentemente, os sistemas embarcados acompanham a tendência do uso das ferramentas computacionais inteligentes de forma embarcada em máquinas. Existem diversos trabalhos na área de sistemas embarcados e sistemas inteligentes puros ou híbridos, porém, são poucos os que uniram ambas as áreas em um só projeto. O objetivo deste trabalho foi implementar um sistema fuzzy neural adaptativo em hardware com treinamento online para embarque em Field Programable Gate Array - FPGA. A adaptação do sistema pode ocorrer durante a execução de uma determinada aplicação, visando melhora do desempenho de forma online. A arquitetura do sistema é modular, possibilitando a configuração de várias topologias de redes fuzzy neurais com treinamento online. Verificou-se que o sistema proposto obteve desempenho satisfatório quando aplicado a problemas de interpolação, classificação de padrões e a problemas industriais. Diante dos resultados dos experimentos foram discutidas as vantagens e desvantagens do treinamento online em hardware ser realizado de forma paralela e serializada, esta última forma proporcionou economia na área utilizada de FPGA, já a forma de treinamento paralelo demonstrou alto desempenho e reduzido tempo de processamento. O trabalho utilizou ferramentas de desenvolvimento disponíveis para circuitos FPGA. |