Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Medeiros, Indira Aritana Fernandes de |
Orientador(a): |
Souza, Carlson Pereira de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Química
|
Departamento: |
Pesquisa e Desenvolvimento de Tecnologias Regionais
|
País: |
BR
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufrn.br/jspui/handle/123456789/15848
|
Resumo: |
In this work it was synthesized and characterized the cobalt ferrite (CoFe2O4) by two methods: complexation combining EDTA/Citrate and hydrothermal investigating the influence of the synthesis conditions on phase formation and on the crystallite size. The powders were mainly characterized by x-ray diffraction. In specific cases, it was also used scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), x-ray fluorescence (XRF) and isotherms of adsorption and desorption of nitrogen (BET method). The study of the crystallite size was based on the interpretation of x-ray diffractograms obtained and estimated by the method of Halder-Wagner-Scherrer and Langford. An experimental design was made in order to assist in quantifying the influence of synthesis conditions on the response variables. The synthesis parameters evaluated in this study were: pH of the reaction medium (8, 9 and 10), the calcination temperature (combined complexation method EDTA/Citrate 600°C, 800°C and 1000°C), synthesis temperature (hydrothermal method 120°C, 140°C and 160°C), calcination time (combined complexation method EDTA/Citrate - 2, 4 and 6 hours) and time of synthesis (hydrothermal method 6, 15 and 24 hours). By the hydrothermal method was possible to produce mesoporous powders with high purity, with an average crystallite size up to 7 nm, with a surface area of 113.44 m²/g in the form of pellets with irregular morphology. By using the method of combined complexation EDTA/Citrate, mesoporous powders were produced with greater purity, crystallite size up to 22nm and 27.95 m²/g of surface area in the form of pellets with a regular morphology of plaques. In the experimental design was found that the hydrothermal method to all the studied parameters (pH, temperature and time) have significant effect on the crystallite size, while to the combined complexation method EDTA/Citrate, only temperature and time were significant |