Comitê de agrupamentos hierárquicos que preserva a Ttransitividade

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Moura, Ronildo Pinheiro de Araújo
Orientador(a): Bedregal, Benjamin Rene Callejas
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/26768
Resumo: A ideia principal do aprendizado por comitês é aprimorar os resultados de métodos de aprendizagem de máquina combinando múltiplos modelos. Inicialmente aplicada a problemas de aprendizagem supervisionada, esta abordagem permite produzir resultados com qualidade superior em relação a um único modelo. Da mesma forma, aprendizagem de comitê aplicados ao aprendizado não supervisionado, ou consenso de agrupamento, produz agrupamentos de alta qualidade. A maioria dos métodos de comitê para agrupamento de dados são destinados a algoritmos particionais, e apresentam resultados de qualidade superior aos agrupamentos simples. Deste modo, é razoável esperar que a combinação de agrupamentos hierárquicos possa levar a um agrupamento hierárquico de melhor qualidade. Os estudos recentes não consideram as particularidades inerentes aos diferentes métodos de agrupamento hierárquico durante o processo do consenso. Este trabalho investiga a consistência dos resultados do consenso considerando diferentes métodos de agrupamento hierárquico utilizados para gerar o comitê. Uma abordagem é proposta para preservar um tipo de transitividade presente nos dendrogramas. Neste algoritmo, os dendrogramas representando os resultados individuais dos agrupamentos bases são convertidos em matrizes ultramétricas. Então, após um processo de fuzzificação, alguns operadores de agregação com a capacidade de preservar uma t-transitividade geram uma matriz consenso. O agrupamento hierárquico final é obtido a partir da matriz consenso. A análise de resultados dos experimentos realizados em conjuntos de dados conhecidos e a visualização da operação do algoritmo em conjunto de dados visuais (duas dimensões) indica que esta abordagem consegue melhorar a acurácia enquanto é consistente com o método gerador.