Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Santos, Vitor Lopes dos |
Orientador(a): |
Ribeiro, Sidarta Tollendal Gomes |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM NEUROCIÊNCIAS
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufrn.br/jspui/handle/123456789/19812
|
Resumo: |
Os recentes avanços técnicos das duas últimas décadas para o registro de sinais neuroeletrofisiológicos foram essenciais para que se testassem hipóteses há muito propostas acerca de como células nervosas processam e armazenam informação. No entanto, ao permitir maior detalhamento dos dados coletados, as novas tecnologias levam inevitavelmente ao aumento de sua complexidade estatística e, consequentemente, à necessidade de novas ferramentas matemático-computacionais para sua análise. Nesta tese, apresentamos novos métodos para a análise de dois componentes fundamentais nas atuais teorias da codificação neural: (1) assembleias celulares, definidas pela co-ativação de subgrupos neuronais; e (2) o padrão temporal de atividade de neurônios individuais. Em relação a (1), desenvolvemos um método baseado em análise de componentes independentes para identificar e rastrear padrões de co-ativação significativos com alta resolução temporal. Superamos limitações de métodos anteriores, ao efetivamente isolar assembleias e abrir a possibilidade de analisar simultaneamente grandes populações neuronais. Em relação a (2), apresentamos uma nova técnica para a extração de padrões de atividade em trens de disparo baseada na decomposição wavelet. Demonstramos, por meio de simulações e de aplicação a dados reais, que nossa ferramenta supera as mais utilizadas atualmente para decodificar respostas de neurônios e estimar a informação de Shannon entre trens de disparos e estímulos externos. |