Um estudo sobre aprendizado de máquina aplicado à modelagem de retornos de ações

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Santos Júnior, José Gilmar Alves
Orientador(a): Canuto, Anne Magaly de Paula
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/28650
Resumo: O comportamento do preço de ações tem sido objeto de estudo há mais de um século, e as primeiras aplicações de inteligência artificial na previsão de retornos datam da década de 1980. Neste trabalho, foi realizado um estudo sobre a aplicação de máquinas de vetores de suporte na previsão de aspectos da distribuição de probabilidade de taxas de retorno futuras dos preços de ações do mercado brasileiro: com base em valores anteriores das taxas de retorno e volatilidades, ambas extraídas dos preços, deseja-se verificar se a sua utilização é vantajosa em relação a modelos estatísticos mais simples. Através da comparação do desempenho de diversos modelos (lineares, não lineares baseados em máquinas de vetores de suporte e híbridos) em séries temporais com amostragens semanal, diária e intraday de dez minutos, foi evidenciado que: (a) modelos híbridos geram previsões mais precisas do que os demais nas séries de volatilidades; (b) a aplicação de máquinas de vetores de suporte na previsão de valores esperados e intervalos de previsão para taxas de retorno não leva a ganhos em relação a modelos lineares; e (c) a abordagem de tratar a evolução de séries temporais como função pode levar a resultados similares aos alcançados (e muito aquém do melhor possível), caso as séries sejam não lineares contaminadas por ruído aditivo de grande magnitude.