Efeitos dipolares sobre fases magnéticas de aglomerados superparamagnéticos

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Pedrosa, Silas Sarmento
Orientador(a): Carriço, Artur da Silva
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/24673
Resumo: Há presentemente grande interesse de pesquisa em aglomerados de nanopartículas superparamagnéticas, devido em parte à alta demanda para aplicações biomédicas, e ao mesmo tempo ao grande interesse, do ponto de vista fundamental, em novas fases magnéticas. A suscetibilidade magnética inicial e o campo de fuga, são fatores essenciais para otimização de sistemas para aplicações biomédicas. Há, ao mesmo tempo, grande interesse em confirmar a existência de ferromagnetismo dipolar, em sistemas onde a energia de troca não é fator dominante. Desenvolvemos um estudo teórico do impacto da interação dipolar sobre as fases magnéticas de nanopartículas superparamagnéticas, confinadas em aglomerados esféricos e elipsoidais. Consideramos nanopartículas de Fe3O4 com tamanhos no intervalo de 9 nm a 12 nm, arranjadas com densidade uniforme em aglomerados de tamanho da ordem de centenas de nanômetros. Mostramos que as fases magnéticas, e a suscetibilidade inicial, são controladas pela interação dipolar, e que a topologia do arranjo de nanopartículas, o tamanho das nanopartículas e a densidade de empacotamento são fatores que controlam as propriedades magnéticas. Mostramos que a interação dipolar pode estabilizar fases magnéticas clássicas, conhecidas apenas para sistemas com alto conteúdo de energia de troca e de anisotropia. Além disso, as fases magnéticas em remanência têm uma característica peculiar: a média térmica do momento de cada nanopartícula pode se aproximar do valor de saturação, mantendo o aglomerado superparamagnético. Aglomerados elipsoidais de alta excentricidade são os sistemas de escolha para aplicações biomédicas porque podem exibir expressivo aumento de suscetibilidade magnética, mantendo um campo de fuga de baixa intensidade em remanência. O modelo teórico reproduz satisfatoriamente resultados experimentais de aglomerados esféricos de Fe3O4, e de sistemas de partículas de Fe e Co de baixa dimensionalidade.