Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Silva, Renato Santos da |
Orientador(a): |
Nascimento, Fernando Ferraz do |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA E ESTATÍSTICA
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufrn.br/jspui/handle/123456789/25158
|
Resumo: |
Em séries temporais é estudado uma coleção de observações feitas sequencialmente ao longo do tempo. Este tipo de alteração é comum para dados aplicados na teoria dos valores extremos (TVE) . Em dados ambientais, por exemplo, em chuva, vento e temperatura, seus níveis podem estar correlacionados com a sazonalidade, além de apresentar uma tendência de aumento ao longo dos anos, devido a mudanças climáticas no planeta. Geralmente, este tipo de evento foi trabalhado usando distribuições paramétricas padrão como a Normal ou Gama, veja em Camargo et al. (1994). Entretanto, os dados ambientais, na maioria dos casos, têm uma cauda pesada, ao contrário dessas distribuições. Em algumas situações analisar apenas a distribuição de valores extremos generalizada (GEV) de um conjunto de dados pode fornecer poucas observações, nestes casos é mais interessante usar a distribuição das r-maiores estatísticas de ordem (GEVr) . Este trabalho consiste no desenvolvimento de um algoritmo no Software R, para distribuições posterioris, para GEVr com base na estimativa bayesiana usando cadeias de Markov MCMC e o uso da técnica do algoritmo de Metropolis-Hastings. Também foi introduzido um Modelo Linear Dinâmico (DLM) , que é uma classe geral de modelos de séries temporais, para modelar os parâmetros da GEVr ao longo do tempo. O modelo proposto foi aplicado na série temporal da temperatura em ºC de Teresina-PI e no retorno da BOVESPA, com a finalidade de modelar a sazonalidade da temperatura na capital piauiense e dos níveis de retorno, também foi incorporado um Modelo Linear Dinâmico Sazonal (DLMS), que é uma classe de modelos de séries temporais para modelar os parâmetros da GEVr ao longo do tempo. O modelo proposto foi aplicado na série temporal da temperatura em ºC de Teresina-PI, Curitiba-PR e Brasília-DF. |