Modelos e algoritmos para o problema de planejamento para produção de pecursos em jogos de estratégia de tempo real

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Oliveira, Caio Freitas De
Orientador(a): Goldbarg, Elizabeth Ferreira Gouvea
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/25633
Resumo: Jogos de estratégia em tempo real (RTS) apresentam muitos desafios para a criação de inteligências artificiais. Um destes desafios é criar um plano de ações efetivo dentro de um dado contexto. Um dos jogos utilizados como plataforma para criação de game AIs competitivas é o StarCraft. Tais game AIs têm dificuldade em se adaptar e criar bons planos para combater a estratégia inimiga. Neste trabalho, um novo modelo de escalonamento de tarefas é proposto modelando os problemas de planejamento em jogos RTS. Este modelo considera eventos cíclicos e consiste em resolver um problema multiobjetivo que satisfaz restrições impostas pelo jogo. São considerados recursos, tarefas e eventos cíclicos que traduzem as características do jogo em um caso do problema. O estado inicial do jogo contém as informações sobre os recursos, tarefas incompletas e eventos ativos. A estratégia define quais recursos maximizar ou minimizar e quais restrições são aplicadas aos recursos, bem como o horizonte de projeto. São investigados quatro otimizadores multiobjetivo: NSGA-II e sua variante focada em joelhos, GRASP e Colônia de Formigas. Experimentos com casos baseados em problemas reais de Starcraft são reportados.