Análise de modelos de predição de perdas de propagação em redes de comunicações LTE e LTE-Advanced usando técnicas de inteligência artificial

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Cavalcanti, Bruno Jácome
Orientador(a): Mendonça, Laércio Martins de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/25061
Resumo: A perfeita funcionalidade dos sistemas de comunicações de 3ª. e 4ª. gerações requerem, entre outras coisas, do conhecimento dos valores numéricos da predição das perdas de propagação dos sinais propagantes nos ambientes urbano, suburbano e rural. Portanto, o estudo das condições de propagação em um ambiente qualquer sempre será uma preocupação dos engenheiros projetistas. A análise e desenvolvimento de modelos robustos de predição de perdas de propagação em redes de comunicações Long Term Evolution (LTE) e Long Term Evolution Advanced (LTE-A) usando técnicas de Inteligência Artificial são realizadas neste trabalho. Os procedimentos metodológicos empregados foram aplicados no melhoramento da predição dos modelos de perda de propagação empíricos SUI, ECC-33, Ericsson 9999, TR 36.942 e o modelo do Espaço Livre, aplicados em redes LTE e LTE-A nas frequências de 800 MHz, 1800 MHz e 2600 MHz, para ambientes suburbanos em cidades de porte médio do nordeste do Brasil. Assim, nesta tese propõem-se dois modelos de Redes Neurais Artificiais (RNA): (i) o modelo de rede neural com entradas baseadas em erro (RNBE), utilizando como principal alimentador da rede o erro entre dados medidos e simulados, e, (ii) o modelo de rede neural com entradas baseadas no terreno (RNBT). O desempenho desses modelos foram comparados com os modelos de propagação considerados no trabalho e também as versões otimizadas utilizando Algoritmos Genéticos (AG) e o Método dos Mínimos Quadrados (LMS). Também foram realizadas comparações com valores medidos, obtidos a partir de uma campanha de medição realizada na cidade de Natal, Estado do Rio Grande do Norte. Os resultados finais obtidos através de simulações e medições apresentaram boas concordâncias métricas, com destaque para a performance do modelo RNBE. A principal contribuição dessa tese é que, ao utilizar essas técnicas que fazem uso de maneira mais eficiente dos modelos de propagação empíricos, pode-se estimar sinais propagantes realistas, evitando erros no planejamento e implementações de redes sem fio LTE e LTE-A em áreas suburbanas.