Hybridizing metaheuristics for multi-and many-objective problems in a multi-agent architecture

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Fernandes, Islame Felipe da Costa
Orientador(a): Goldbarg, Elizabeth Ferreira Gouvea
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufrn.br/handle/123456789/48504
Resumo: Algoritmos híbridos combinam as melhores características de meta-heurísticas individuais. Eles têm se mostrado eficazes em encontrar soluções de boa qualidade para problemas de otimização multiobjetivo. Arquiteturas fornecem funcionalidades e recursos genéricos para a implementação de novos algoritmos híbridos capazes de resolver problemas arbitrários de otimização. Arquiteturas baseadas em conceitos de inteligência de agentes e sistemas multiagente, como aprendizado e cooperação, oferecem vários benefícios para a hibridização de meta-heurísticas. No entanto, a literatura carece de estudos sobre arquiteturas que exploram totalmente tais conceitos para hibridização multiobjetivo. Esta tese estuda uma arquitetura multiagente, chamada MO-MAHM, inspirada nos conceitos de Otimização por Nuvem de Partículas. Na MO-MAHM, partículas são agentes inteligentes que aprendem com suas experiências passadas e se movem no espaço de busca procurando por soluções de alta qualidade. A principal contribuição desta tese é estudar o potencial da MO-MAHM em hibridizar meta-heurísticas para resolver problemas de otimização combinatória com dois ou mais objetivos. Este trabalho investiga os benefícios de métodos de aprendizagem de máquina para suporte ao aprendizado dos agentes e propõe um novo operador de velocidade para mover os agentes no espaço de busca. O operador de velocidade proposto usa uma técnica de path-relinking e decompõe o espaço objetivo sem utilizar funções de agregação. Outra contribuição desta tese é uma extensa revisão das técnicas existentes de path-relinking multiobjetivo. Devido a uma carência com respeito a técnicas de path- relinking para múltiplos objetivos, esta tese apresenta um novo path-relinking baseado em decomposição, chamado MOPR/D. Experimentos abrangem três problemas de otimização combinatória de formulações distintas com até cinco funções objetivo: mochila binária multi-dimensional, alocação quadrática e árvore geradora. MO-MAHM é comparada com abordagens híbridas existentes, tais como algoritmos meméticos e hyper-heurísticas. Testes estatísticos mostram que a arquitetura apresenta resultados competitivos com respeito à qualidade dos conjuntos aproximativos e diversidade de soluções.