Um algoritmo evolucionário para o problema dinâmico de localização de facilidades com capacidades modulares

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Silva, Allyson Fernandes da Costa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/24220
Resumo: Location problems aim to determine the best positions where facilities should be installed in order to meet existing demands. Due to its wide applicability, several characteristics have already been appended to the models to better represent real situations. One of them generalizes classical models to the case that location decisions should be taken periodically. Another allows models to deal with capacity sizing as a problem variable. The Dynamic Facility Location Problem with Modular Capacities unifies these and other characteristics present in location problems in a single and generalized model. This problem was recently formulated in literature where an exact approach was introduced and applied to instances of a case study in the context of the forestry sector. We present an alternative method to solve the same problem. The method chosen uses a Genetic Algorithm metaheuristic framework and hybridizes it with a Variable Neighborhood Descent routine with three neighborhoods adapted from others applied to location problems. Experiments attested the effectiveness of the hybrid metaheuristic developed in comparison to the use of those methods purely. Compared to the exact approach, the heuristic proved to be competent by finding solutions up to a gap of 0,02% to the global optimum in the majority of the instances tested.