Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Cunha, Lucas Marques da |
Orientador(a): |
Souza, Gustavo Antônio de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM BIOINFORMÁTICA
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufrn.br/handle/123456789/50991
|
Resumo: |
A abordagem proteômica permite estudos em larga escala da expressão proteica em diferentes tecidos e fluidos corporais, tendo como objetivo identificar e quantificar o conteúdo proteico total. No processo de análise proteômica, a identificação de proteínas ainda apresenta lacunas, apesar dos grandes avanços na área. Frequentemente, um espectrômetro de massa é utilizado para gerar valores de massa/carga das amostras. Após esse processo, geralmente utiliza-se um banco de dados de proteínas referência (por exemplo, UniProt) para identificação das proteínas. Porém, utilizar uma base de referência limita as análises de identificação das proteínas, uma vez que não contém as variações que ocorrem no DNA, que podem impactar na sequência de aminoácidos, ocasionando identificação incorreta ou impossibilitando o processo. Nesse contexto, existem diversas bases de dados personalizadas que incorporam tais variações genéticas. Embora apresentem bons resultados, também se limitam devido à ausência de algumas mutações, tornando-se outro problema no processo de identificação. Portanto, essa pesquisa tem como objetivo construir m banco de dados de proteogenômica (dbPepVar) combinando informações de variação genética do dbSNP com sequências de proteínas do RefSeq do NCBI. Conjuntos de dados públicos de espectrometria de massa foram usados para realizar uma análise pan-câncer (Ovário, Colorretal, Mama e Próstata), permitindo a identificação de variações genéticas únicas. No total, 3.726 peptídeos variantes foram identificados em amostras de câncer de ovário, 2.543 em próstata, 2.661 em mama e 2.411 em câncer de cólon-retal. Uma análise de frequência mutacional mostrou genes envolvidos nos processos de progressão tumoral, sensibilidade à quimioterapia e risco de suscetibilidade ao câncer. Curiosamente, em muitas amostras, foram identificados peptídeos C-terminais de proteínas encurtadas originárias de eventos de códon de terminação prematura (PTC). Isso indica que tais proteínas escaparam do decaimento mediado por mutações Nonsense (NMD) e, não surpreendentemente, os genes da maquinaria NMD também estão mutados nas mesmas amostras. Isso sugere que o vestígio do transcrito truncado pode estar associado à ineficiência da maquinaria NMD causada por mutações genéticas. Em perspectiva, o portal web desenvolvido bem como as análises realizadas podem direcionar estudos para identificar novos alvos terapêuticos para diferentes tipos de câncer, podendo-se também utilizar nosso banco de dados para caracterização de variantes em amostras de antecedentes genéticos desconhecidos, como amostras arquivadas. O portal está disponível em: https://bioinfo.imd.ufrn.br/dbPepVar/. |