Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Carvalho, Genickson Borges de |
Orientador(a): |
Moura, Maria de Fátima Vitória de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufrn.br/jspui/handle/123456789/22210
|
Resumo: |
No presente trabalho é descrito a síntese e a caracterização dos compostos de coordenação entre os nitratos de lantanídeos (III) e a pirazinacarboxamida (PyZ), visando uma possível aplicação funcional desses novos compostos como dispositivos moleculares conversores de luz. Os complexos obtidos foram caracterizados por meio de diversas técnicas analíticas, das quais podemos destacar: análise elementar, condutividade eletrolítica molar, termogravimetria (TG) e análise térmica diferencial (DTA) simultânea, calorimetria exploratória diferencial (DSC), espectroscopia de absorção no infravermelho médio (FT-IR), espectroscopia por energia dispersiva de raios-X (EDS), difratometria de raios-X (DRX) pelo método do pó, espectroscopia de absorção eletrônica (UV-Vis) a 298 K e espectroscopia de luminescência a 298 K. Através dos resultados de análise elementar, termogravimetria e de condutividade eletrolítica molar, foi possível propor as seguintes fórmulas moleculares: [Ln(PyZ)2(NO3)2]NO3.2H2O (Ln3+ = La–Eu) e [Ln(PyZ)2(NO3)2]NO3.H2O (Ln3+ = Gd–Dy). As curvas TG-DTA e DSC forneceram informações a respeito da desidratação, degradação, estabilidade e natureza dos eventos térmicos referentes aos processos de decomposição. Os dados de condutividade, tanto em nitrometano como em acetonitrila, sugeriram comportamento de eletrólito 1:1 para todos os compostos, reforçando os resultados dos espectros de absorção na região do infravermelho médio, que indicaram a presença de nitrato não coordenado aos íons metálicos. Nos espectros eletrônicos no UV-Vis observou-se o deslocamento das bandas de absorção dos complexos estudados, quando comparadas às bandas do ligante livre, sugerindo a coordenação do íon metálico central com o ligante pirazinacarboxamida. A análise dos espectros de absorção na região do infravermelho (FT-IR) permitiram estabelecer que os sítios de coordenação do ligante PyZ com o íon metálico são o oxigênio carbonílico e o nitrogênio α do anel pirazínico. A interpretação dos difratogramas de raios-X revelou a existência de três séries isomórficas: a primeira compreende os compostos de La3+ e Ce3+, a segunda os compostos de Pr3+ ao Tb3+ e a terceira ao composto de Dy3+. O estudo das bandas hipersensitivas do complexo de neodímio no estado sólido a 298 K permitiu determinar os parâmetros espectroscópicos, cujos valores numéricos indicam que a interação metal-ligante é essencialmente eletrostática. A partir dos espectros eletrônicos obtidos em solução de acetonitrila e etanol calculou-se a força do oscilador (P), cujos valores sugerem uma maior influência do etanol na esfera de coordenação do íon Nd3+. O espectro de emissão do complexo de gadolínio revelou que a energia do estado tripleto excitado do ligante PyZ, encontra-se acima dos níveis emissores dos íons Eu e Tb, o que favorece o processo de transferência de energia metal-ligante. Baseando-se na análise do espectro de emissão do composto de európio no estado sólido a 298 K, foi possível atribuir uma microssimetria aproximadamente D2d, consistente com a geometria de um dodecaedro distorcido para o composto. A análise de luminescência sugere que os complexos de Eu3+, Tb3+, Sm3+ e Dy3+ apresentam emissões características na região dos íons lantanídeos, porém, quando em solução de acetonitrila, apenas o complexo de samário não apresentou emissão na região do visível por ter possivelmente sua luminescência suprimida pela presença do solvente. |