Uso de redes neurais para a previsibilidade de parâmetros de perfuração de poços de petróleo

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Pixinine, Thaísa Loureiro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Mecânica
UFRJ
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11422/13770
Resumo: This work develops the use of intelligent systems with the objective of achieving the minimum financial cost per meter drilled in the shortest time, through parameter predictions, this selection is currently performed through the analysis of similar wells already made and in the experience of the engineer of responsible drilling, there are few technical devices for this forecast. The use of analytical methods is usually an arduous task due to the complexity of the problem. This dissertation will present a method of transcribing tacit knowledge for computational logic through neural networks in order to predict in a more assertive way one of the main drilling parameters, which in this case is the drilling rate of drills.