Controle preditivo não linear para o gerenciamento de energia de um veículo elétrico híbrido a célula a combustível
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Rio de Janeiro
Brasil Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Pós-Graduação em Engenharia Elétrica UFRJ |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/11422/23223 |
Resumo: | This work proposes an energy management system (EMS) for a fuel cell hybrid electric vehicle (FCHEV). This system is based on nonlinear model predictive control (NMPC) and employs a recurrent neural network (RNN) to model a proton exchange membrane (PEM) fuel cell (FC). With NMPC, it is possible to formulate control objectives that would not be possible with linear model predictive control (MPC), such as maximum e ciency point tracking (MEPT) of the FC. In addition, compared to traditional electrochemical models, the RNN can predict the FC's nonlinear dynamics with better accuracy. The EMS was implemented on a low-cost single board computer, and the experiments for controller validation were performed on a hardware-in-the-loop (HiL) test bench equipped with a real 3 kW FC stack. The experimental results demonstrate that the proposed EMS can meet the vehicle's energy demand, where it performs the battery's charge sustaining battery, and can operate the FC in its most e cient region. In addition, a comparative study was also carried out between the proposed NMPC, a linear MPC and a hysteresis band control. The results of this comparative study demonstrate that the NMPC provides a better fuel economy and can reduce the FC degradation. |