Sistema de previsão de eventos meteorológicos convectivos para a área terminal do Rio de Janeiro

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Almeida, Vinícius Albuquerque de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Civil
UFRJ
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11422/23173
Resumo: In this work, two weather forecasting approaches using machine learning algorithms for the flight terminal area of the International Airport of Rio de Janeiro are explored. The first method uses thermodynamic stability indices extracted from the airport soundings as input variable for the model and, as target variable, the prediction of (a) occurrence and (b) severity of meteorological convective events - classified from atmospheric discharges recorded by the RINDAT network between 2001 and 2016. The results found for the prediction of occurrence (severity) indicate more than 90% (84%) probability of detection and about 10% (20%) false alarm. A second method consists of training artificial neural networks for local data assimilation (surface and profile) in the regional atmospheric model Weather Research Forecasting applied to 6-hour forecast fields. This method proved to be efficient to emulate the traditional data assimilation approach (3d-var) without significant loss of information and with two great advantages: execution time around 70 times faster and can be used without high-performance hardwares.