Simulação numérica do comportamento mecânico de um pavimento asfáltico instrumentado submetido a diferentes condições de saturação

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Vargas, Gustavo Adolfo Badilla
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Civil
UFRJ
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11422/23240
Resumo: Currently, in Brazil, the criterion of the optimum moisture content has been adopted to be used in triaxial repeated loading tests as representative of the field conditions and equilibrium moisture of well-designed pavements and built with efficient drainage devices (surface and deep) efficient. However, this criterion may not be adequate in regions with high levels of equilibrium moisture or with large and frequent variations. The main objective of this research is to contribute with the understanding of the global behavior of the materials and pavement structures taking into account the water table level, which is one of the main variables associated to the climatic conditions. In this thesis, the results of instrumentation, monitoring data and laboratory tests obtained by Silva (2009) were used. In this research a full-scale physical model was developed to study the mechanical behavior of a pavement structure subjected to six depth levels of the water table. These results were used as input parameters for new numerical modeling that considers a simulation of the stresses state associated with the phenomena of suction and capillarity prior to the mechanical characterization of the unbounding layers of the pavement structure. The methodology proposed in this thesis provided an additional tool that verified that the variation in the post-compaction moisture content of the modeled materials affects the values of the Resilient Modulus, the surface deflection and the critical strains of the pavement structure, showing variations in the expected fatigue performance and permanent deformation.