A tutorial on variational methods for machine learning
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal do Rio de Janeiro
Brasil Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Pós-Graduação em Engenharia Elétrica UFRJ |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/11422/20697 |
Resumo: | In this work, we present a tutorial on deep generative models, specically Varia- tional Autoencoders (VAE) and deep Bayesian Neural Networks (BNN). In spite of being apparently distinct, both themes are intimately connected through the pro- babilistic view of machine leaning. Therefore, we describe approximate inference methods since exact approaches are only adequate in very limited conditions in which the computation time remains feasible. We discuss modern extensions to such methods, capable of adequately sca- ling to models with millions of parameters and equally large data sets. Furthermore, we illustrate their relevance in each chapter through applications using (deep) neural networks. |