Uma investigação sobre métodos de separação cega de fontes sonoras envolvendo representações não-negativas e diversidade espacial

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Romero, Claudio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Elétrica
UFRJ
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11422/6429
Resumo: The problem of blind source separation finds many applications across different areas, thus justifying the ever increasing number of works in this topic. This work focuses on studying this problem for sound sources, employing non-negative signals’ representations, while also taking advantage of the spatial diversity induced by the use of multiple channels; this particular feature has recently opened up new research directions regarding the proper modeling of multichannel source separation This work studies two different algorithms: NMF-SCM (sound source separation using non-negative matrix factorization and direction-of-arrival-based spatial covariance model), whose model represents the state of the art, taking in consideration not only the characteristics of the sources but also the enviroment into which they were captured on; and NTF (non-negative tensor factorization), whose simplified model is the multichannel equivalent of NMF (non-negative matrix factorization). During the development of this work both algorithms were implemented. A vectorized and parallelized NMF-SCM implementation is presented; and some improvements are proposed to the NTF algorithm, as well as a method for blind determination of the number of sources in multichannel mixtures.