Otimização via algoritmos meta-heurísticos de perfis de aço U enrijecidos formados a frio submetidos à compressão axial

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Oliveira, Felipe Ramos de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Civil
UFRJ
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11422/23172
Resumo: This study assumes that the usual geometry of cold formed steel (CFS) can be improved by computational processes to increase their capacity, leading to more efficient and economical systems. This dissertation aims to provide a methodology that allows the development of lipped channel columns with maximum capacity for practical applications. The algorithms developed in this work match the geometric requirements suggested by NBR 14762, practical and fabrication restrictions suggested by researches. The compressive strength of the CFS was determined by the Direct Strength Method (DSM) adopted in the Brazilian standard and the critical buckling loads required by the procedure that was calculated by the Finite Strip Method (FSM) and by Machine Learning (ML) techniques. The performance of four optimization processes based on different meta-heuristic algorithms were compared. Five lipped channel profiles (U) available in the manufacturers catalog have been taken as a reference in the optimization studies.